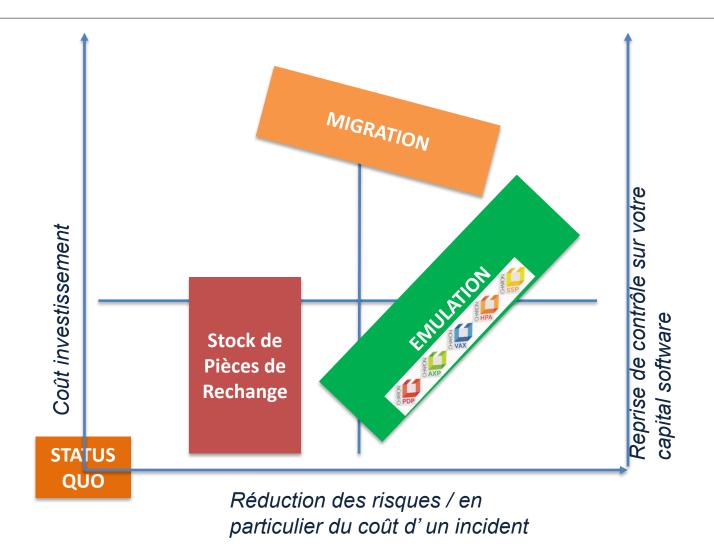
STROMASYS

Emulation de vos serveurs
OpenVMS

La suite d'émulateurs

Charon-VAX

Charon-AXP



PROBLÉMATIQUE DES SYSTÈMES LEGACY?

LES PIEGES ORDINAIRES

- Oublier que l'optimisation des coûts ajoute un facteur de risques en supposant que la solution mise en œuvre répond à tous les cas de figures – exemple se contenter de renouveler un contrat de maintenance
 - Définir les scenarios d'incidents
 - Analyses AMDEC (Analyses des modes de défaillance, de leurs effets et de leur criticité)
 - Mettre en œuvre la mitigation des risques les plus critiques
- Imaginer que l'on n'a aucune solution
 - Certaines assertions sont vraies si l'on reste sur un modèle traditionnel (exemple pas moyen de trouver un matériel neuf – disque / contrôleur RAID) mais la virtualisation élimine ce fait
- S'y prendre trop tard
 - Après accident Il n'y a parfois aucun signe annonciateur
 - Après départ des ingénieurs connaissant véritablement le système
 - A force de décaler un désengagement applicatif sans avoir procédé à réévaluation de risques
- Oublier les systèmes les faire disparaitre lors de maj d'outils
 - Monitoring / backups / middleware

IDENTIFICATION

- Les Analyses de risques type ISO-27001 & ISO-27005 permettent d'identifier les applications concernées
- Les obligations réglementaires relatives aux OIV (LPM), aux entreprises concernées par les directives Européennes sur les CNI et les opérateurs de services essentiels (OSE)
- Les analyses et Retex sur les incidents de production de vos systèmes d'information
 - => Identification de systèmes Legacy critiques

LES FACTEURS DE DÉCISION

- Si utilisation de pièces de rechange
 - Durée en approvisionnement croissante et coûts importants
 - Confrontation à la réalité : ce n'est pas toujours la bonne solution car les pièces sont « non qualifiées » dans le cas réel : pb de firmware, de connecteurs, HS
- Pertes de productivités suite aux incidents
- Augmentation des coûts de maintenance ou d'assurances
- Responsabilités pénales des dirigeants
- Sanctions pécunières (exemples pour les OIV / Obligation de PRA)
 - 150 000€ /Non-conformité : si responsabilité en nom propre du dirigeant
 - 750 000€ /Non-conformité : si personne morale
- Effort de quantification effective d'une perte de production (tout compris)

QUANTIFICATION EFFECTIVE D'UNE PERTE DE PRODUCTION / DE DONNÉES

Coûts directs

- Perte de production à la vente
- Perte de main d'œuvre
 - Non mobilisée sur la production
 - Eventuellement manipulations plus complexe, perte de productivité
 - Coûts de démobilisation
 - Replanification de travaux
- Pénalités fournisseurs (sur engagement de production, de service public ex-transport)
- Coût du stockage
- Coût du transport :
 - conducteurs à mettre en attente
 - Frais de replanification

Coûts indirects

- Perte de notoriété / Communication négative
- Coût de replanification (voir impossibilité sur des années exemple d'une expérience scientifique)
- Renégociation de contrats de maintenance
- Risques environnementaux
- Coûts sociaux
- Coûts juridiques

VIRTUALISATION VS EMULATION

- Virtualisation => on reste sur la même famille de processeurs
 - Solaris x86 peut-être virtualisé par exemple sous vmware
- Emulation
 - Emulation système : on lit des instructions de haut niveau et on les exécute par un interprête dédié
 - Emulation par remplacement de librairies qui vont permettre de substituer des librairies spécifiques à une plate-forme par une autre série de librairies (containerisation par des outils qui réécrive le code => emulation PA-RISC sur Itanium pour HP-UX ou MPE
 - Emulation matérielle => solution de Stromasys
 - Des périphériques d'entrée sortie (disques scsi, ecran, clavier, cartes réseau, carte graphique, bus QBUS, connecteurs GPIB, contrôleurs FC, etc...
 - Mais surtout le processeur par traduction des instructions

On a un émulateur par modèle de processeur – des templates pour donner des configurations matérielles par défaut correspondant à un modèle précis d'origine

- Autres options si environnement simple :
 - Replatforming : retrouver une version de votre application ayant existé sur un autre processeur / exemple Oracle 9i sur Linux X86

EMULATEURS

- Essentiellement des solutions Freeware pour usage non commercial (destinées aux hobyistes, retraités, étudiants)
- Avantages de Stromasys:
 - Dimension équipe / et chiffre d'affaires
 - Equipe de développeurs du laboratoire de DEC qui avait pour mission les émulateurs PDP vers VAX et Alpha ou Vax vers Alpha toujours présents
 - Famille d'émulateurs PDP/VAX/ALPHA/SPARC/PA-RISC => convergence et méthodologies enrichies par différentes équipes
 - Capacité à suivre les évolutions des plate-formes matérielles (nouvelles infrastructures – nouveaux systèmes de stockage) et des versions des OS windows et Linux
 - Parc installé avec revenus récurrents en support => capacité à faire du H24/365J/AN
 - Intégration avec les hyperviseurs / les opérateurs Cloud
 - Des milliers de vente dans plus de 75 pays

AVANTAGES DE L'ÉMULATION CHARON

- Solution sans réécriture
- Émulation du processeur => pas de dépendance OS ou applicative
 - Même émulateur pour AXP/OpenVMS ou True64
 - Même émulateur pour VAX/ OpenVMS ou VAXeIn
 - Émulation selon plate-forme matérielle en respect des contraintes du serveur d'origine de OpenVMS 5.5 (VAX) à 8.4 (HP ou VSI)
- Changement pour l'utilisateur final réduit à un minimum voir nul (si conservation hostname et adresse ip)

ALLIANCES & CLOUD

Oracle Partner Network & Oracle Cloud - Gold Worldwide

HPE Partner Ready Technology Program – Silver

VMware Technology Alliance Partner - Access

AWS Technology Partner ISV - Standard (passed Well Architected review)

Microsoft Partner Network - Member (Cloud Solution Provider)

Nutanix Partner - Build ("Nutanix Ready" certification)

IBM PartnerWorld - Registered (Embedded Solution Agreement)

Cisco Solution Partner Program - Solution Partner

NetApp Alliance Program - Advantage

Red Hat Business Partner ISV – Advanced Red redhat.

Google Cloud – Solution partner

AMÉLIORATION DES COÛTS D'EXPLOITATION

- Occupation d'espace réduite
- Limitation de la consommation en énergie
- Amélioration (généralement) des temps d'exécution
- Abandons de technologies délicates (Lecteurs de Bandes magnétiques)
- Possibilités d'upgrades en ressources virtuelles
 - Plus de CPU, d'espace disque, de bande passante réseau, de mémoire
 - Ajouts de membres à des clusters
 - Réplication de données facilités
 - Intégration à une nouvelle infrastructure (ex Cloud on Premise)
- Passage de Capex en Opex

RÉDUCTION DE RISQUES

Matériel récent

- Remplacent des disques anciens proches de défaillances
- Mieux intégré aux procédures de contrôles ou de maintenance
- Sous maintenance simple
- Compétences recouvrées (sur le hardware)
- Identification des assets
- Ré-Intégration à des infrastructures de services managés
- Possibilité de reconsidérer des archivages simples
- Ré-engager des compétences sur le suivi de ces systèmes devenus orphelins dans la société concernée.
- Support partenaire et éditeur

INTÉGRER LES SYSTÈMES EN CONFORMITÉ AVEC LA POLITIQUE DE SÉCURITÉ ENTREPRISE

- Mise en place d'environnements distincts :
 - Production
 - Préproduction
 - Développement
 - Bacs à sable
- Valider les mises à jour sur le host
 - patchs systèmes,
 - Upgrades Antivirus
 - Middleware (transferts, MQ, alarming, backups, scheduler)
 - Nouveaux développements pour désengagements incrémentaux
- Sécurisation des accès administrateurs, opérateurs, etc...
- Organiser des refresh de préproduction (restore de prod)
- Crypter les disques cryptage du stockage du host
- Administration par tunnels ssh certificats
- Intégration à des sas/bastions pour l'accès distant
- Monitoring SNMP, Produits tiers et/ou OpenSource,
- Etc...

PRÉCONISATIONS HARDWARE POUR CHARON-AXP

- Selon nature processeur à émuler on recommande une fréquence d'au moins 3GHz : architecture Intel Xeon ou processeur Core I7/I9 ou maintenant AMD
- Idéalement le nombre de coeurs requis est égal au (nombre de CPUs ALPHA émulés * 2) + 2 pour le host Linux/Windows + coeurs additionnels pour les los si elle sont intensives
- La mémoire du serveur hébergeant les instances est au minimum de la quantité de mémoire émulée/ Instance + 4GB
- Pour TCP/IP, autant de cartes réseaux dédiées que de cartes réseaux virtuelles déclarées + 1 pour l'administration, pour Decnet selon infrastructure
- Si l'hôte est une machine virtuelle sous VMWARE/Hyper-V par exemple, des paramètres sont à préciser sur les hyperviseurs

PRÉCONISATIONS SOFTWARE POUR CHARON-AXP

- Distributions Windows ou Linux 7.x ou 8.x (RedHat, Oracle, Centos, Rocky-Linux)
- Installation de xorg-x11-server-xephyr pour le X-serveur
- utilitaires pour la configuration des interfaces réseaux

Cas Linux

- Utilisation de yum/rpm pour l'installation des packages
- Mise à jour des drivers USB si support de dongle / License

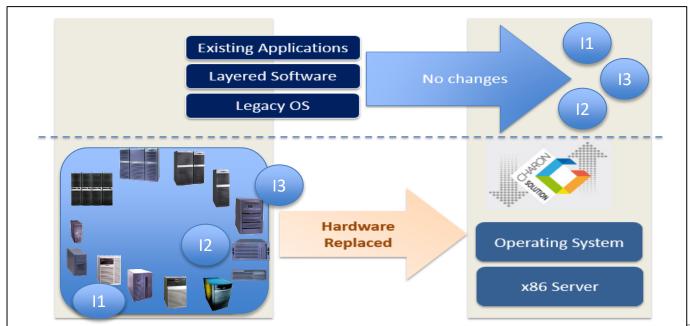
Installation de l'émulateur

MACHINES VIRTUELLES

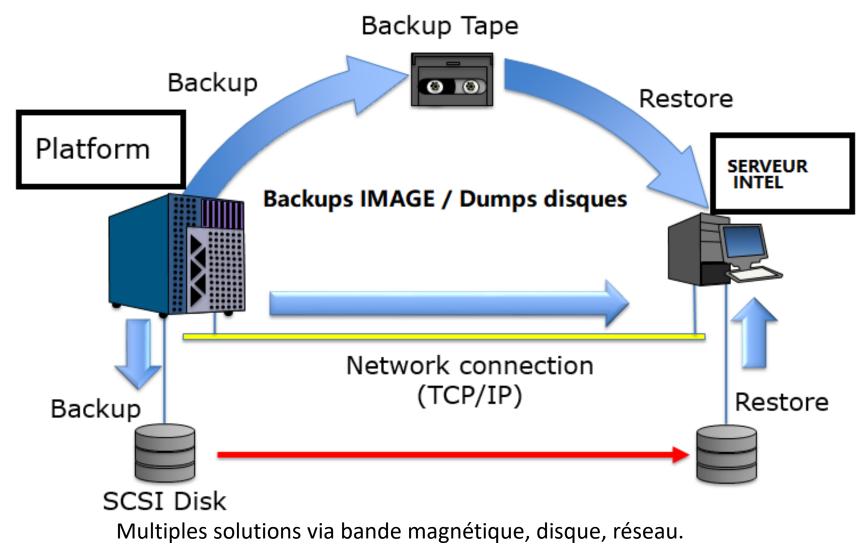
Hyperviseurs compatibles

- vSphere/ESXi
- Vmware workstation and player
- Oracle Virtual box
- Oracle VM/Xen
- Microsoft Hyper-V
- Nutanix Acropolis
- KVM

Notes: sous conditions de


- Sizing adéquat
- Réservation de ressources dédiées ⇔ Politique de bascule de VM non automatique
- Configuration d'interfaces reseau non managées par l'hyperviseur
- Surveillance des charges coexistantes (ex si replication d'autres VM)

CONSOLIDATION


 Plusieurs instances de CHARON-AXP peuvent être exécutées sur un serveur Intel unique sous réserve que les exigences matérielles soient satisfaites.

Par exemple: 2 x microVAX de 1 CPUs et 256 MB de RAM et 1xDS25 avec 2 CPUs et 2 GB de RAM et 1 ES40 avec 4 CPUS et 16GB de RAM, peuvent être consolidés sur un serveur X86 de 16 Cores @ 3.6 Ghz et 32GB RAM qui exécutera ces 4 instances 2x CHARON-AXP et 2xCharon-VAX

MIGRATION VERS CHARON-AXP/VAX

LIENS UTILES

- Website Stromasys: www.stromasys.com
- Synthèse Stromasys et CHARON : www.stromasys.com/downloads-section/#videos
- 9
- Références Clients : www.stromasys.com/references/
- Ressources pour Partenaires: www.stromasys.com/partners/partner-resource-center/

LA SOCIÉTÉ STROMASYS

Une présence globale - siège de la Société en Suisse

HISTORIQUE

DIGITAL: PDP11, VAX, AXP

Programmable

PDP Data Processor (PDP-11: 16 bit)

Virtual Address

VAX extension (32 bit)

Extended VAX

Alpha (64 bit)

CHARON-AXP

NOTRE ACTIVITÉ?

Migrer les applications legacy vers du materiel moderne sans rupture de service

REDUCTION DE COÛTS

DEMARCHE DURABLE REDUCTION DE RISQUES

AMELIORATION DE PERFORMANCES

RETOUR RAPIDE SUR INVESTISSEMENT

Applications

Database

Legacy operating system

Legacy

PDP-11 VAX Alpha HP 3000

SPARC

No changes

Hardware replaced

Applications

Database

Legacy operating system

Operating system

x86 / cloud

Merci de votre attention!

